skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Steinberger, T E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Laser induced fluorescence is used to measure argon ion heating during magnetic reconnection in the PHase Space MApping experiment (PHASMA). Sufficient signal-to-noise ratio (SNR) of the processed signal with pulsed laser injection is a delicate balance between saturation of the absorption line and injecting enough laser power to overcome the spontaneous emission of the plasma at the fluorescence wavelength. Averaging over many laser pulses and integrating over the fluorescence lifetime improves the SNR of the processed signal (processed SNR) when the SNR of the laser pulse time series is small (pulse SNR), but for laser powers small enough to avoid saturation, averaging over hundreds of pulses is needed to obtain an appreciable processed SNR over the entire Doppler-broadened absorption line. Here, we describe a matched filter processing method that significantly improves the SNR of the final measurement with fewer shots averaged. Investigation of simulated measurements validated by experimental results suggests that the matched filter method provides up to a 20% improvement in the processed SNR, resulting in less uncertainty in distribution function fits. 
    more » « less
  2. The small signal-to-noise ratio (SNR) of conventional laser induced fluorescence (LIF) measurements using a continuous wave laser, either diode or dye, is typically overcome by amplitude modulating the laser at a specific frequency and then using lock-in amplification to extract the signal from measurement noise. Here, we present LIF measurements of the neutral helium velocity distribution function in an rf plasma using frequency modulated (FM) laser injection. A pulse train of 100% amplitude modulation is generated synthetically with a random sequence of pulse lengths. The FM signal then drives an acoustic optic modulator placed in the path of the injection beam in an LIF measurement. The signal from a fast photomultiplier tube is digitized and cross-correlated with the known modulation signal. The resultant FM-based LIF signal outperforms a conventional lock-in-based LIF measurement on the same plasma in terms of SNR and precision. 
    more » « less
  3. Abstract Experiments have demonstrated that ion phenomena, such as the lower hybrid resonance, play an important role in helicon source operation. Damping of the slow branch of the bounded whistler wave at the edge of a helicon source (i.e. the Trivelpiece-Gould mode) has been correlated with the creation of energetic electrons, heating of ions at the plasma edge, and anisotropic ion heating. Here we present ion velocity distribution function measurements, electron density and temperature measurements, and magnetic fluctuation measurements on both sides of an m = | 1 | helical antenna in a helicon source as a function of the driving frequency, magnetic field strength, and magnetic field orientation relative to the antenna helicity. Significant electron and ion heating (up to two times larger) occurs on the side of the antenna consistent with the launch of the m = + 1 mode. The electron and ion heating occurs within one electron skin depth of the plasma edge, where slow wave damping is expected. The source parameters for enhanced particle heating are also consistent with lower hybrid resonance effects, which can only occur for Trivelpiece-Gould wave excitation. 
    more » « less
  4. Abstract Radio frequency (RF) driven helicon plasma sources are commonly used for their ability to produce high-density argon plasmas ( n > 10 19  m −3 ) at relatively moderate powers (typical RF power < 2 kW). Typical electron temperatures are <10 eV and typical ion temperatures are <0.6 eV. A newly designed helicon antenna assembly (with concentric, double-layered, fully liquid-cooled RF-transparent windows) operates in steady-state at RF powers up to 10 kW. We report on the dependence of argon plasma density, electron temperature and ion temperature on RF power. At 10 kW, ion temperatures >2 eV in argon plasmas are measured with laser induced fluorescence, which is consistent with a simple volume averaged 0D power balance model. 1D Monte Carlo simulations of the neutral density profile for these plasma conditions show strong neutral depletion near the core and predict neutral temperatures well above room temperatures. The plasmas created in this high-power helicon source (when light ions are employed) are ideally suited for fusion divertor plasma-material interaction studies and negative ion production for neutral beams. 
    more » « less
  5. null (Ed.)